OOM描述信息:
2018-09-18 14:46:54.338 [http-nio-8099-exec-8] ERROR o.a.c.c.C.[.[.[.[dispatcherServlet] - Servlet.service() for servlet [dispatcherServlet] in context with path [/party-data-center] threw exception [Handler dispatch failed; nested exception is java.lang.OutOfMemoryError: GC overhead limit exceeded] with root causejava.lang.OutOfMemoryError: GC overhead limit exceeded at org.bson.io.ByteBufferBsonInput.readString(ByteBufferBsonInput.java:154) at org.bson.io.ByteBufferBsonInput.readString(ByteBufferBsonInput.java:126) at org.bson.BsonBinaryReader.doReadString(BsonBinaryReader.java:245) at org.bson.AbstractBsonReader.readString(AbstractBsonReader.java:461) at org.bson.codecs.BsonStringCodec.decode(BsonStringCodec.java:31) at org.bson.codecs.BsonStringCodec.decode(BsonStringCodec.java:28) at org.bson.codecs.BsonArrayCodec.readValue(BsonArrayCodec.java:102) at org.bson.codecs.BsonArrayCodec.decode(BsonArrayCodec.java:67) at org.bson.codecs.BsonArrayCodec.decode(BsonArrayCodec.java:37) at org.bson.codecs.BsonDocumentCodec.readValue(BsonDocumentCodec.java:101) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:84) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:41) at org.bson.codecs.configuration.LazyCodec.decode(LazyCodec.java:47) at org.bson.codecs.BsonDocumentCodec.readValue(BsonDocumentCodec.java:101) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:84) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:41) at org.bson.codecs.configuration.LazyCodec.decode(LazyCodec.java:47) at org.bson.codecs.BsonDocumentCodec.readValue(BsonDocumentCodec.java:101) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:84) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:41) at org.bson.codecs.configuration.LazyCodec.decode(LazyCodec.java:47) at org.bson.codecs.BsonArrayCodec.readValue(BsonArrayCodec.java:102) at org.bson.codecs.BsonArrayCodec.decode(BsonArrayCodec.java:67) at org.bson.codecs.BsonArrayCodec.decode(BsonArrayCodec.java:37) at org.bson.codecs.BsonDocumentCodec.readValue(BsonDocumentCodec.java:101) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:84) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:41) at org.bson.codecs.BsonDocumentCodec.readValue(BsonDocumentCodec.java:101) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:84) at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:41) at com.mongodb.connection.ReplyMessage.(ReplyMessage.java:51) at com.mongodb.connection.InternalStreamConnection.receiveCommandMessageResponse(InternalStreamConnection.java:301)
根据以上信息,好像是MongoDB查询数据的时候占用内存过大,导致的OOM
导出dump文件并且分析一下 使用MAT打开文件后有个 Problem Suspect 1(最有可能导致内存溢出的提示)
The thread org.apache.tomcat.util.threads.TaskThread @ 0xf9b19fa0 http-nio-8099-exec-8 keeps local variables with total size 58,255,056 (60.49%) bytes.The memory is accumulated in one instance of "java.lang.Object[]" loaded by "".The stacktrace of this Thread is available. See stacktrace.Keywordsjava.lang.Object[]Details »
点击 See stacktrace
信息量还是很庞大的,慢慢分析。 找到
at com.mongodb.DB.command(Lcom/mongodb/DBObject;Lcom/mongodb/ReadPreference;Lcom/mongodb/DBEncoder;)Lcom/mongodb/CommandResult; (DB.java:496) at com.mongodb.DB.command(Lcom/mongodb/DBObject;Lcom/mongodb/ReadPreference;)Lcom/mongodb/CommandResult; (DB.java:512) at com.mongodb.DB.command(Lcom/mongodb/DBObject;)Lcom/mongodb/CommandResult; (DB.java:467)
我们可以发现是执行Mongo命令出的错误,MongoResult,,,这不是返回的Mongo查询结果集吗??难道是返回的结果集过大??很有可能!!! 继续往下看。。。
at com.fosung.data.party.dao.DetailDao.detailQuery(Lcom/fosung/data/party/dto/PartyItemDto;)Lcom/fosung/data/party/vo/OutDetailCountVo; (DetailDao.java:314) at com.fosung.data.party.dao.DetailDao$$FastClassBySpringCGLIB$$caf49f16.invoke(ILjava/lang/Object;[Ljava/lang/Object;)Ljava/lang/Object; (Unknown Source)
此处看到我们业务代码的方法,很有可能就是此处方法导致的OOM,进一步分析我们的业务方法: 经过我们仔细分析终于找出问题的原因: 上面出现问题的原因是在获取总条数的时候,没有加分页条件(skip和limit)导致查询所有符合条件的记录(符合条件的记录有6w多条),全部加载到内存中,因此导致了OOM问题。
解决: MongoDB使用管道查询后获取符合条件的总条数
db.getCollection('user_order').aggregate([ { "$match" : { "code" : "100002255842358"}} , { "$project" : { "code" : 1 , "yearInfo" : 1 , "personInfo" : 1}} , { "$unwind" : "$yearInfo.counts"} , { "$unwind" : "$yearInfo.counts.code"} , { "$match" : { "yearInfo.counts.code" : { "$in" : [ "1"]}}} , { "$sort" : { "code" : 1 , "yearInfo.counts.sort" : 1}} , { "$lookup" : { "from" : "user_info" , "localField" : "yearInfo.counts.detail" , "foreignField" : "_id" , "as" : "personInfo"}} , { "$unwind" : "$personInfo"} , {"$group":{"_id":null,"totalCount":{"$sum":1}}}, {"$project":{"totalCount":"$totalCount","_id":0}} ])
不需要每次去获取所有记录数,再取记录的条数。
修改完后测试完美通过。。。